Forward estimation for ergodic time series

نویسندگان

  • Gusztáv Morvai
  • Benjamin Weiss
چکیده

The forward estimation problem for stationary and ergodic time series {X n } ∞ n=0 taking values from a finite alphabet X is to estimate the probability that X n+1 = x based on the observations X i , 0 ≤ i ≤ n without prior knowledge of the distribution of the process {X n }. We present a simple procedure g n which is evaluated on the data)| → 0 almost surely for a subclass of all stationary and ergodic time series, while for the full class the Cesaro average of the error tends to zero almost surely and moreover, the error tends to zero in probability. Leprobì eme d'estimation future d'une série de temps ergodique et stationnaire {X n } ∞ → 0 presque sûrement pour une sous-classe de toutes les séries de temps ergodiques et stationnaires, tandis que pour la classeentì ere la moyenne de Cesaro de l'erreur tend vers zéro presque sûrement. De plus, l'erreur tend vers zéro en probabilité.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

Compression-based methods for nonparametric on-line prediction, regression, classification and density estimation of time series

Jorma Rissanen has discovered some deep connections between universal coding (or universal data compression) and mathematical statistics. In particular, the MDL principle has been one of the most powerful methods of modern mathematical statistics. In this paper we apply Rissanen’s approach and ideas to some statistical problems concerned with time series. We address the problem of nonparametric...

متن کامل

Compression - based methods for nonparametric density estimation , prediction , regression and classification for time series

We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...

متن کامل

N ov 2 00 7 Compression - based methods for nonparametric density estimation , on - line prediction , regression and classification for time series

We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and real-valued ones and the following four problems: i) estimation of the (limiting) probability P (u0 . . . us) for every s and each sequence u0 · · · us of letters from the process alphabet (or estimation of the density p(x0, . . . , xs) for re...

متن کامل

Multiple Change-Point Estimation in Stationary Ergodic Time-Series

Given a heterogeneous time-series sample, it is required to find the points in time (called change points) where the probability distribution generating the data has changed. The data is assumed to have been generated by arbitrary, unknown, stationary ergodic distributions. No modeling, independence or mixing are made. A novel, computationally efficient, nonparametric method is proposed, and is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0711.3856  شماره 

صفحات  -

تاریخ انتشار 2005